

Mestrado em Engenharia Alimentar

Tecnologia dos Cereais Cereal Evolution and Genomics

Manuela Gomes da Silva

Índice

Evolução dos genomas de cereais

Poliploidização

Autopoliploidia vs Alopoliploidia

Processos de poliploidização

Vantagens da poliploidia

Deteção e estudo de poliploides

Citogenética, Sequenciação

Sequenciação – Metodo Sanger

Cereais sequenciados

Poliploidização nas Gramineas

Genoma de Gramineas

Arroz, milho, aveia, triticale

Espécies selvagens aparentadas e variedades tradicionais

Impactos do aquecimento global

Aplicações da biologia molecular no estudo de cereais

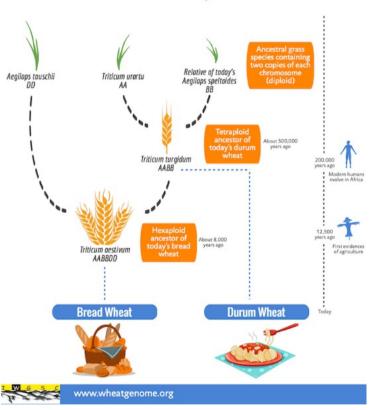
Understanding **Cereal Genomics**

Cereals economic and scientific importance

→ extensive history of research in genetics, development, and evolution

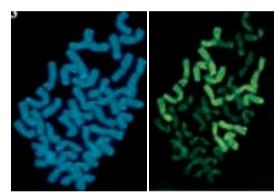
Relationships among morphologically <u>diverse cereals</u> from globally <u>geographic environments</u>

→ particularly attractive for <u>comparative studies</u> of **plant genome evolution**


Complete genome sequence of rice (2002)

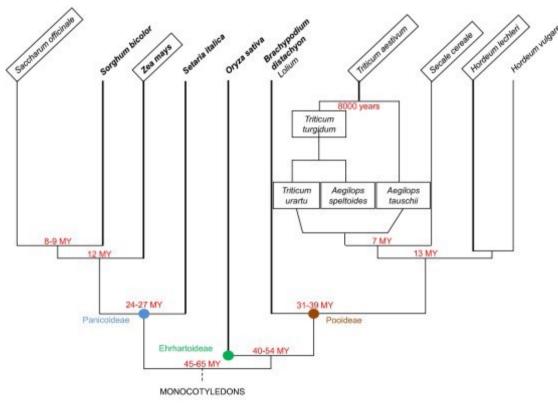
→ transition to high-throughput genomics study of many other cereals

... wheat sequenced 2018

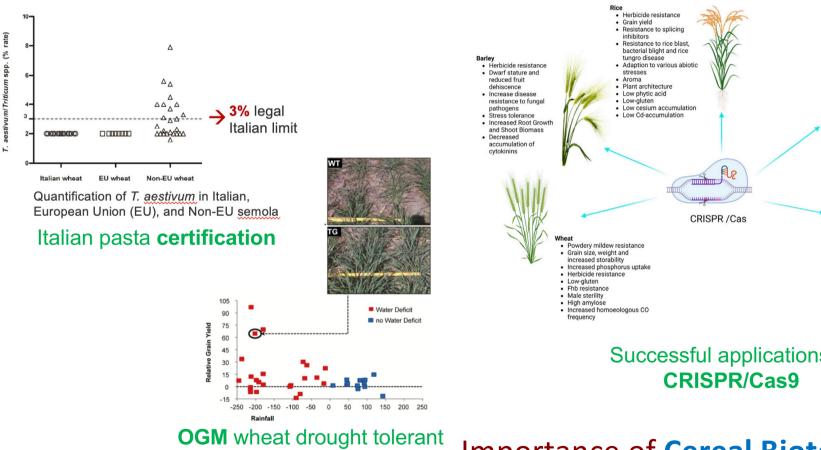


Today's bread wheat originates from three ancestral grass species and results from two consecutive hybridizations

International **Wheat** Genome **Sequencing** Consortium **IWGSC**


Importance of cytogenetics and molecular biology for cereal study

FISH of hexaploid triticale metaphase


→ to understand the evolution of cereal genomes

Design strategies for **Plant Breeding**

Poaceae phylogenomics based on a biosynthetic pathway

Use of Molecular Biology tools

Successful applications of

Various abiotic stress

Herbicide resistance

Increased grain yield

under drought stress

Reduced α-kafirin

· Delayed flowering Altered leaf inclination

angle, ligule and

· Studies reports the

development of

editting flatform

CRISPR mediated

auricle size

Improved grain protein digestibility and lysine

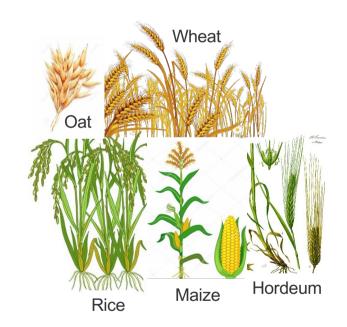
resistance

Male sterility

tolerance and disease

Importance of Cereal Biotechnology

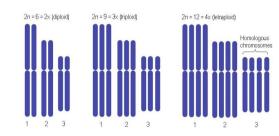
Polyploid plants - Gramineae

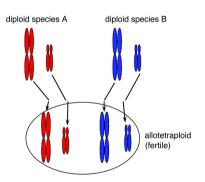

Many crop plants are polyploid

Potato, cotton, coffee, tobacco, banana...

A sample of agricultural products obtained from polyploid crops

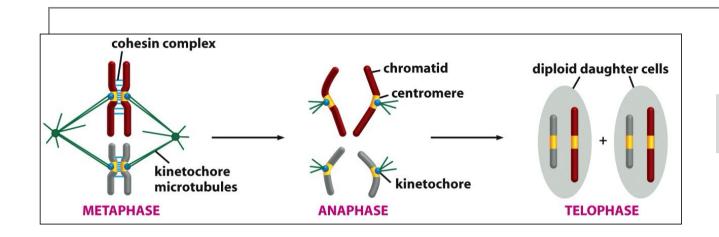
Polyploidy is <u>particularly frequent</u> in **Poaceae** family (**Gramineae**)

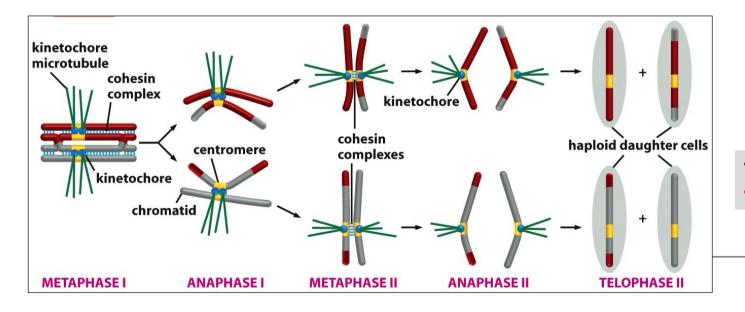

Polyploidy


■ POLYPLOID - plants with <u>multiple copies</u> of a genome or with <u>different genomes</u>

■ Autopolyploid ← duplication of one genome

 □ Allopolyploid ← combination of 2 or more different genomes


How do polyploid plants arise??

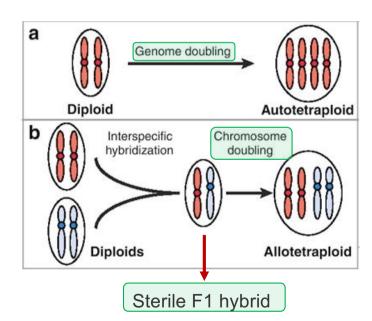

→ Mitotic or Meiotic errors

Rare events that occurred at least one time throughout the evolutive history

MITOSE

1 duplicação - 1 divisão → 2 células diploides (2n)

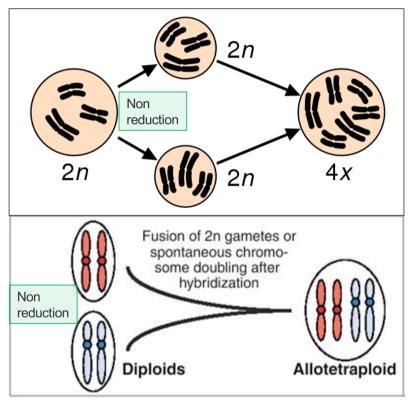
MEIOSE


1 duplicação - 2 divisões → 4 células haploides (n)

Polyploidy origin - Mitotic anomalies

→ somatic chromosome doubling

Diploid species doubling → autopolyploid


F1 hybrid doubling → allopolyploid

(a) Formation of an autotetraploid by chromosome doubling

(b) Formation of an **allotetraploid** by **interspecific hybridization** followed by **chromosome doubling**.

Polyploidy origin - Meiotic anomalies -> Fusion of diploid gametes

Fusion of unreduced gametes from a diploid species.

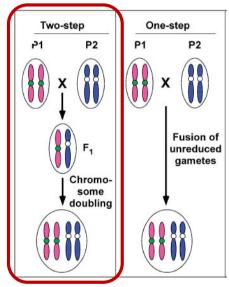
→ Autopolyploid

Fusion of unreduced gametes in two different diploid species.

→ Allopolyploid

Formation of allopolyploids: main models

"Two-step" model


interspecific <u>hybridization</u> <u>chromosome doubling</u> of the F1 hybrid

- → most common process
 - in **Triticeae** evolution
 - to produce **synthetic** polyploids (chemical chromosome-doubling)

"One-step" model

fertilization of <u>unreduced gametes</u> from different diploid species

Atividade – visualização de vídeos em grupo

Grupos de 4/5 alunos

Cada grupo vê um vídeo (10 min)

Cada grupo discute o conteúdo do vídeo e elabora um pequeno **resumo** (10 min)

Cada grupo elege um porta-voz

No fim, apresentação do resumo sobre cada um dos vídeos (5 min)

VÍDEOS - https://tinyurl.com/VideosAulaTecCereais

1 - Mitosis vs. Meiosis: Side by Side Comparison 6'21"

https://www.youtube.com/watch?v=zrKdz93WIVk&ab channel=AmoebaSisters

2- Polyploidy leads to speciation (IB Biology) 4'48"

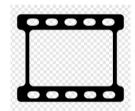
https://www.youtube.com/watch?v=odL631acMC0&ab channel=AlexLee

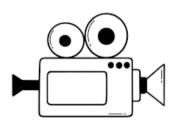
3 - Sweet but dangerous? The strange story of polyploidy 4'11"

https://www.youtube.com/watch?v=Idpt19 PSVQ&ab channel=GatsbyPlantScienceEducationProgramme

4- Is GMO wheat the answer to food security? - Cristobal Uauy 5'03"

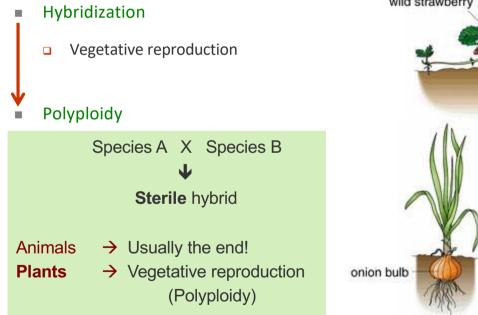
https://www.youtube.com/watch?v=g0bOBkSnNkQ&ab_channel=GatsbyPlantScienceEducationProgramme

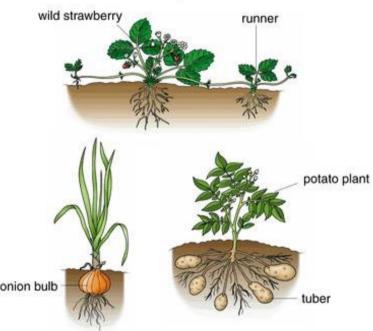

5 - FISH - Fluorescence In Situ Hybridization 3'48"


https://www.youtube.com/watch?v=LiRJoTi44TA&ab channel=Henrik%27sLab

6 - Sanger Sequencing of DNA 3'39"

https://www.youtube.com/watch?v=AI4CnG5Jp4s&ab_channel=LaUrsa



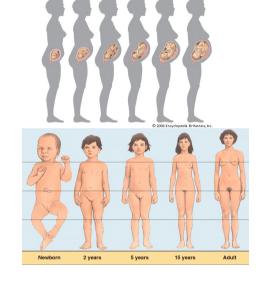


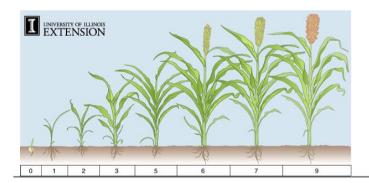
What **plants** do better than animals?

In terms of reproduction, plants have more options than animals:

→ sexual and asexual

Asexual reproduction

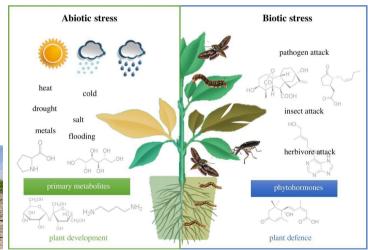

Why Polyploidy is less common in animals?


ANIMALS

Chromosomally determined **sex** (polyploidy interference)

More complex development - organ systems fine-tuned affected by different gene dosages

Reproductive isolation mechanisms (geographic, temporal, behavioral etc.) prevent natural interbreeding between species

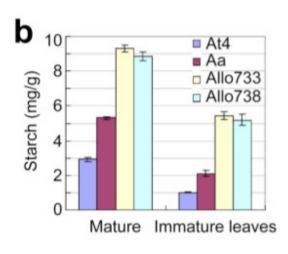

PLANTS

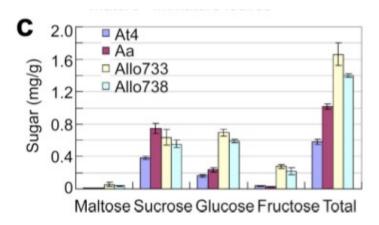
Meristematic tissue throughout their lives and self-fertile

Advantages of Polyploidy

- Higher diversity
- Duplicated gene copies free to mutate
 - → evolve to assume new functions
- Increased adaptability to a higher ecological range
- Enhanced abiotic and biotic stress tolerance
- Larger cells and organs

Polyploidy → Larger cells and organs

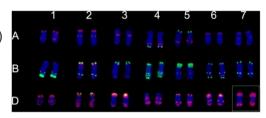

Diploid and **autotetra**ploid cultivars of *Lolium perenne* and *L. multiflorum* (Gramineae)


- Autopolyploid longer leaves, longer mature cells (20x)
 (epidermal and mesophyl)
 - higher cell elongation rate,
 not by a longer period of cell elongation
- No variation in cell division parameters
 (cell production rate and cell cycle time)

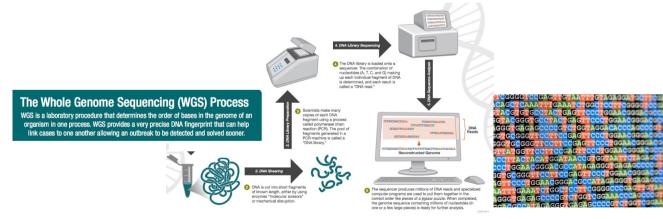
Molecular basis for polyploid vigor

Allopolyploid → genes for photosynthesis and starch metabolism are more active

- Increased photosynthesis, higher amounts of chlorophyll
- higher starch accumulation
 - → growing larger in comparison with their parents



The hybrid *Arabidopsis* plant (center) is larger than its parents (top and bottom), an example of hybrid vigor


Polyploidy detection

Polyploid species – detected by <u>cytogenetics</u>

Wheat FISH with pTa535 (red) A and pSc119.2 (green), chromosomes counterstained with DAPI (blue).

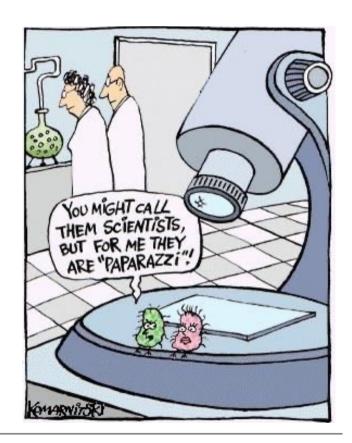
■ Paleopolyploids – detected by genome <u>sequencing</u>

Cereal genome cytogenetics

Metodologias citogenéticas

- Estabelecimento de cariótipos
 - Técnicas de bandeamento
 - → Atividade

Cytogenetics

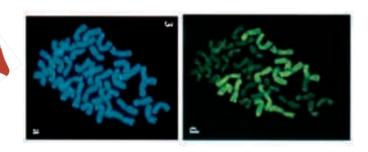

Cytogenetics = Cellular Genetics

- Branch of genetics that studies **cells** and especially **chromosomes**

Cytogenetic tools

- → Conventional **karyotyping**Chromosome banding
- → Molecular cytogenetics

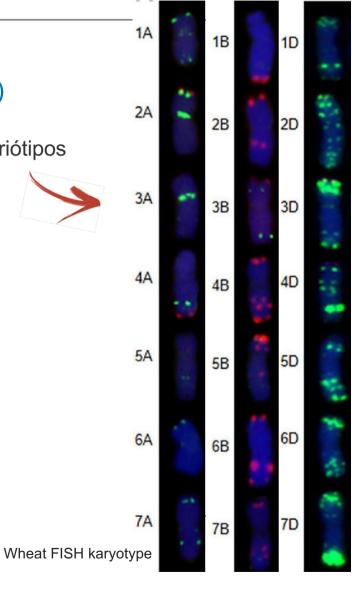
 Fluorescence In Situ Hybridization (FISH)



Estudo de cariótipos

Fluorescence In Situ Hybridization (FISH)

- bandeamento para estabelecimento de cariótipos


- Identificação de genomas das espécies parentais - GISH

Cromossomas de triticale

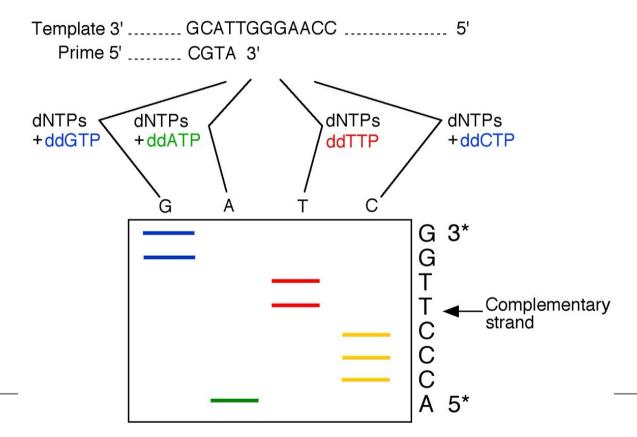
Verde - centeio

Azul – DNA corado com DAPI

Sequencing

 "Sequencing" – order of nucleotides in the DNA molecules

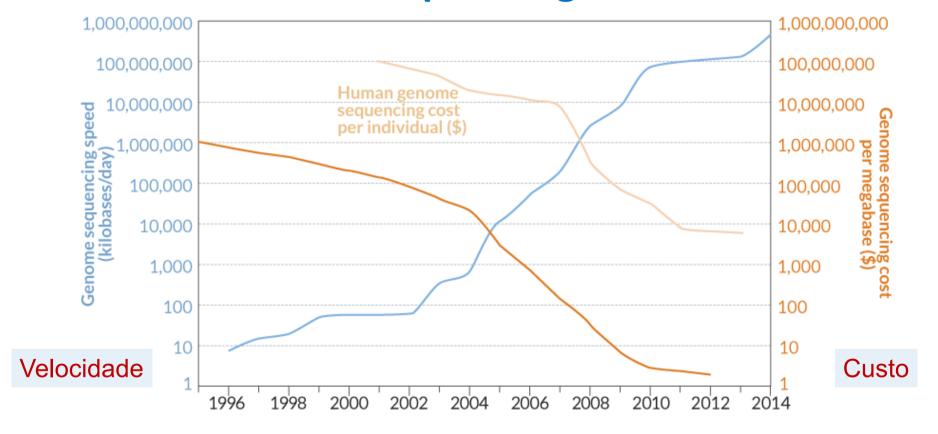
Nucleotides order → amino acids order → protein structure and function


Changes in the DNA (correlated with changes in proteins)

→ Allowed the identification on paleopolyploid species

The Sanger method

Sanger ddNTP Chain Termination Sequencing


Sanger Sequencing

Sequencing methods

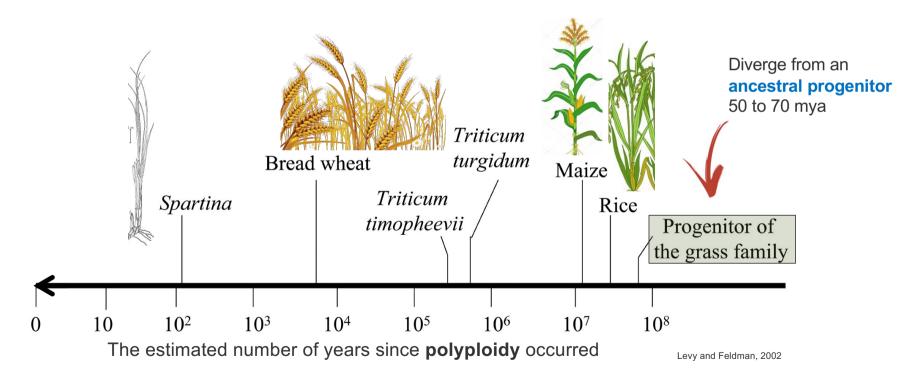
Sanger	Next-generation sequencing	Third generation technologies
One DNA molecule sequenced at a time Gel Sanger Capillary Sanger	DNA is broken into short pieces, amplified , and then sequenced. Illumina GA	Directly sequencing of single DNA molecules. DNA do not break down or amplify. PacBio SMRT Nanopore

Genome sequencing evolution

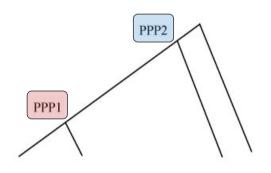
Improvements in genome sequencing technology over the past two decades has
→ Higher **speed** and lower **cost**

Poaceae species with **sequenced genome**

Species	Genome size	Year
Oryza sativa (long grain rice) ssp indica	430 Mbp	2002
Oryza sativa (Short grain rice) ssp japonica	430 Mbp	2002
Sorghum bicolor genotype BTx623	730 Mbp	2009
Zea mays (maize) ssp mays B73	2.3 Gbp	2009
Brachypodium distachyon (purple false brome)	355 Mbp	2010
Hordeum vulgare (barley)	5.3 Gbp	2012
<u>Triticum urartu</u>	4.94 Gbp	2013
Aegilops tauschii (Tausch's goatgrass)	4.36 Gbp	2017
Triticum aestivum (bread wheat)	14.5 Gbp	2018


Gramineae polyploids

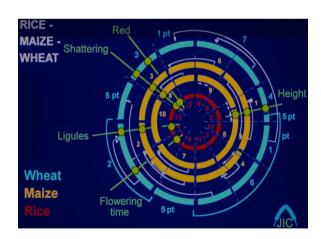
Poaceae (Gramineae) - 10,000 species, 600 to 700 genera


Common ancestral - 50 to 70 million years ago

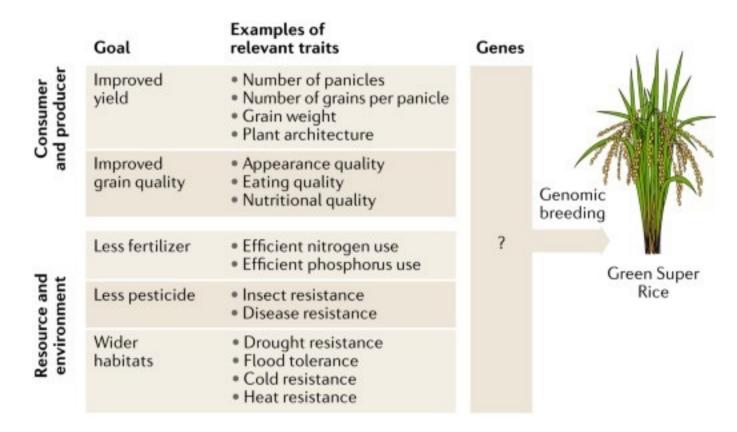
Polyploidy in grasses is an ongoing process

Cereal species **selection** - domestication and improvement

Rice (Oryza sativa) – ancient polyploid


Rice genome analysis

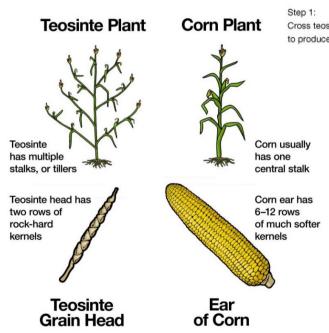
PPP2 - older genome of monocotdicot ancestral


PPP1 - ancient genome duplication of all cereals ancestral

The first genome of a crop plant that was completely sequenced in 2002

- Sequencing of two major subspecies indica & japonica
- Model cereal crop **small genome** size (2n = 24)
- High degree of **similarity with other cereals** genome Ex: wheat, barley and maize

Rice – from ancient polyploid to breeding

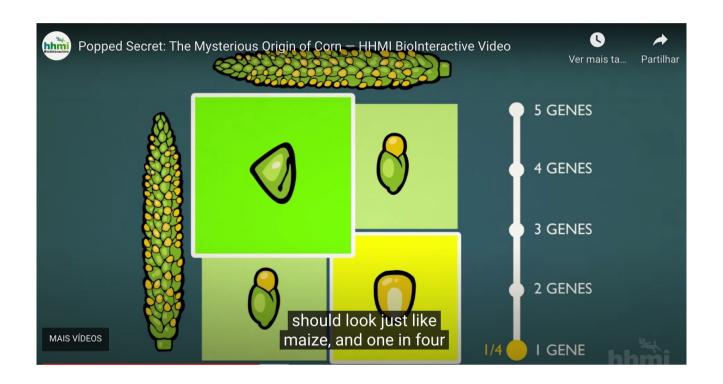


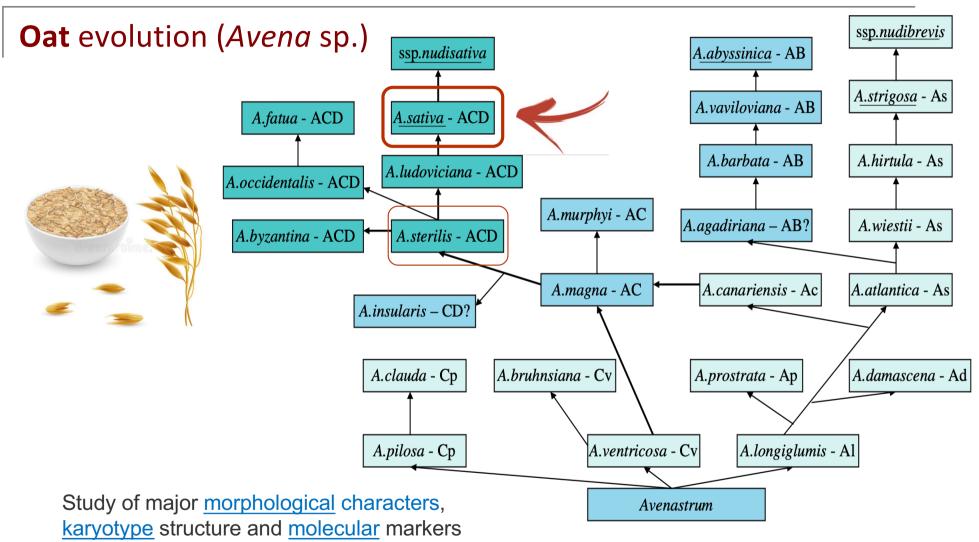
→ **Genetic variation** among <u>domesticated rice</u> species and their <u>wild relatives</u> has been investigated to identifying traits that can be <u>exploited for breed</u>

Evolution of maize

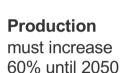
Maize cobs uncovered by archaeologists show the evolution of modern maize over thousands of years of selective breeding.

Teosinte parent

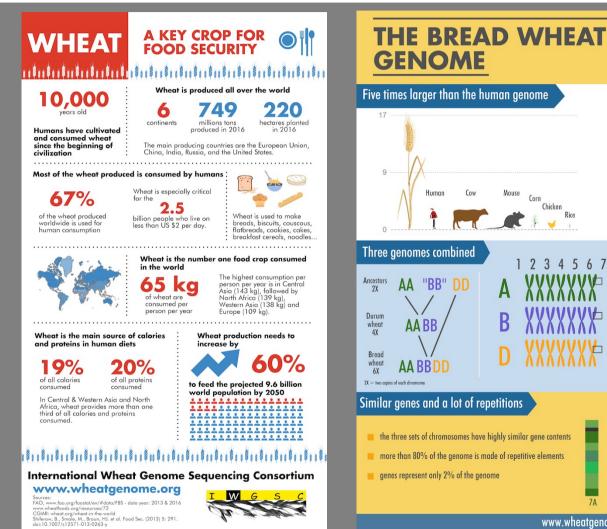

Maize parent


Step 1:
Cross teosinte and maize parents to produce hybrid offspring.

George Beadle 1930s - **teosinte-maize hybrids** → chromosomes are highly compatible.


Calculated that only about **5 genes** were responsible for the notable <u>differences</u> between <u>teosinte</u> and a primitive strain of <u>maize</u>.

Popped Secret: The Mysterious Origin of Corn



International Wheat Genome Sequencing Consortium IWGSC

Human main source of calories and protein

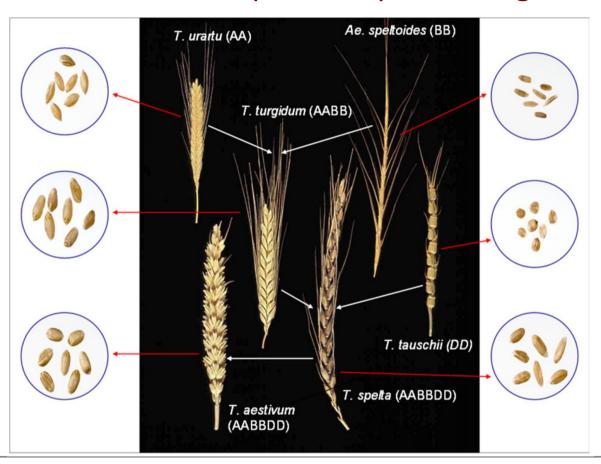
Wheat genome size 35x rice genome

16 Gb !!

1 2 3 4 5 6 7

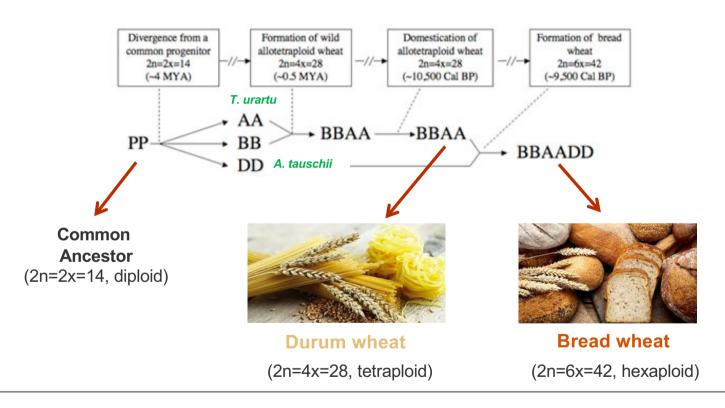
www.wheatgenome.org

35 times larger


Three sets of chromosomes

110,000 to 150,000 genes

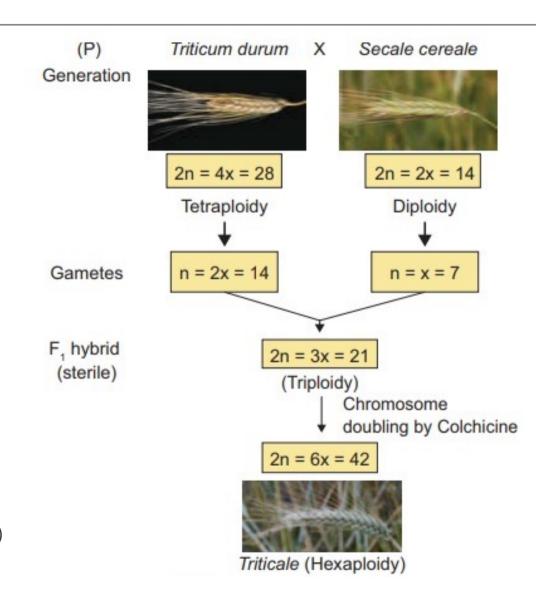
in 2 copies = 42 chromosomes


Complex hexaploid genome

Wheat and relative species - spikes and grains

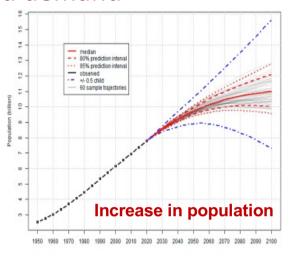
Wheat evolution through polyploidization

Evolutionary history of wheat

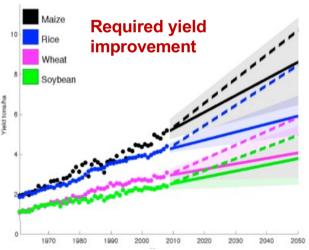


Evolutionary History of Wheat

https://colostate.pressbooks.pub/cropwildrelatives/chapter/wheat-breeding-with-crop-wild-relatives/


Synthetic allopolyploid: **triticale**


Seeds of wheat (left), triticale (centre) and rye (right) (Source: A. Stephen Wilson 1875)


Future increase in food demand

The most sustainable path to achieve **food security** is by **increasing crop yields** <u>instead of use more land</u>.

Improved plants are being developed through the application of **advances in genetic technologies**.

Future of Cereal Genomics and Breeding

<u>Genomic knowledge</u> combined with <u>traditional breeding methods</u> to increase cereal crop production and resilience

- → Commercial varieties
- → Wild relatives
- → Old traditional varieties

Landraces assume crucial importance as pools of agrobiodiversity of

- useful traits for wheat breeding

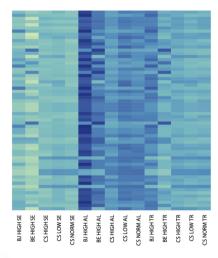
- pre-adapted to environmental stress conditions

Particularly considering the genetically eroded commercial varieties

← decades of homogenization through <u>breeding</u>

Colecção de variedades tradicionais de trigo mole e trigo duro

Vasconcelos, J. C. (1933). **Trigos portuguêses ou de há muito cultivados no país**. Subsídios para o seu estudo botânico. *Bol. Agric.* 1, 2, 1–150.


Heat effect on wheat grain

- level of peptides involved in celiac disease


Evaluation of expression level of 63 genes coding peptides with known immunoreactivity

high temperature → <u>increased</u> expression levels

Climate change does impact wheat allergen expression

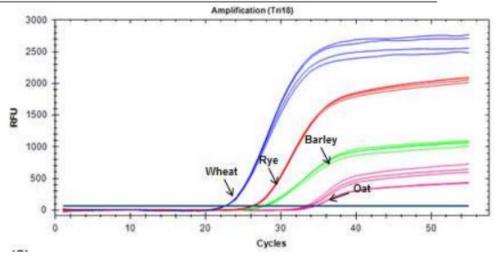
High temperature

Increasing effect on the celiac disease associated gene expressions – gluten proteins

The heat is on: of cereals and genome

https://www.youtube.com/watch?v=6l1dU2-tdVU

Food Control


Volume 56, October 2015, Pages 57-63

Screening new gene markers for gluten detection in foods

Begoña Martín-Fernández ^{a, b}, Joana Costa ^a, M. Beatriz P.P. Oliveira ^a, Beatriz López-Ruiz ^b, Isabel Mafra ^a ≈ ⊠

Detection of gluten in foods

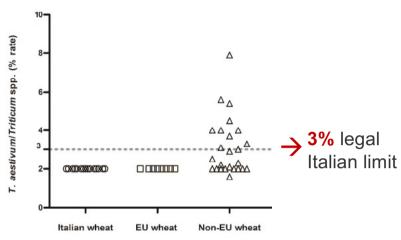
Amplification obtained by real-time PCR of α 2-gliadin in DNA from wheat and related cereals containing gluten (barley and rye) and oat.

Quantitative real-time PCR methods targeting α 2-gliadin coding sequences \rightarrow successfully detection wheat DNA.

<u>Limit of detection:</u> absolute 2 pg and relative 0.005% (50 mg/kg) of wheat in soybean (corresponding to 4.5 mg/kg of gluten).

This methodology reveals also high specificity for detecting other gluten-containing cereals, such as barley and rye.

→ This PCR systems can be used as tools to confirm the presence of **gluten-containing cereals** in foods, towards the safety of celiac patients


Food Chemistry Volume 224, 1 June 2017, Pages 86-91

Validation and application of a quantitative real-time PCR assay to detect common wheat adulteration of durum wheat for pasta production

Elisa Carloni ^a $\stackrel{>}{\sim}$ \bowtie , Giulia Amagliani ^a, Enrica Omiccioli ^b, Veronica Ceppetelli ^b, Michele Del Mastro ^c, Luca Rotundo ^a, Giorgio Brandi ^a, Mauro Magnani ^a

Italian pasta certification

Quantification of *T. aestivum* in Italian, European Union (EU), and Non-EU semola

Manufactured using durum wheat semolina

Italian national legislation excludes the use of bread wheat in pasta permitting a maximum content of 3%.

> protection of traditional pasta

Molecular quantification method

- **DNA extraction** from semolina
- real-time **PCR** targeting **gluten genes** (gliadin and glutenin)
- → allow a specific and sensitive detection

Food Chemistry

Volume 271, 15 January 2019, Pages 410-418

Untargeted DNA-based methods for the authentication of wheat species and related cereals in food products

Silvia Silletti $^1 \boxtimes$, Laura Morello $^1 \stackrel{\triangle}{\sim} \boxtimes$, Floriana Gavazzi \boxtimes , Silvia Gianì \boxtimes , Luca Braglia \boxtimes , Diego Breviario \boxtimes

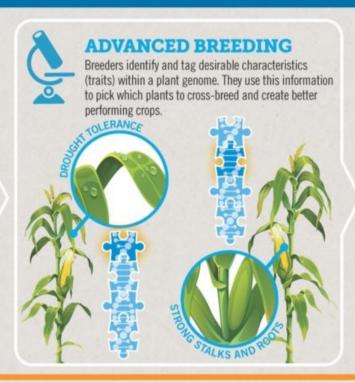
spelt M bread wheat durum wheat durum wheat durum wheat durum wheat conn rice barley oat corn rice buckwheat soybean amaranthus hemp M dq

Subfamily Pooideae

PCR amplification (TBP) on different cereal species

New food commodities


Pasta, bread and cookies, made with mixed flours containing ancient wheat species and other cereals


→ analytical methods to food composition authenticity

Tubulin-based polymorphism (TBP)

→ discriminate <u>different cereal species</u>
Sensitivity of 0.5–1% to detect possible adulterations.

What Is a GMO? | GMOs are the product of a specific type of plant breeding where precise changes are made to a plant's DNA to give it characteristics that cannot be achieved through traditional plant breeding methods.

There are 10 GMO crops commercially available in the U.S. today:

For more information, visit www.GMOAnswers.com

Video - Genetic Engineering & Our Food

Are GMOs Good or Bad?

https://www.youtube.com/watch?v=7TmcXYp8xu4

Arroz dourado

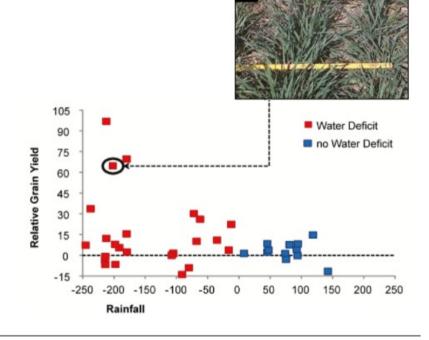
Estima-se que um milhão de crianças morre todos os anos com **deficiência em vitamina A** na Ásia onde a <u>base da alimentação</u> é o **arroz**.

Nos **anos 80** um cientista Suiço teve a ideia de produzir um arroz capaz de sintetizar **beta-caroteno** (<u>precursor da vitamina A</u>).

Em **1999** foi anunciado a primeira planta de arroz com uma <u>coloração amarelada nos grãos</u>.

Mesmo com esta causa estes cientistas viram-se envolvidos em várias polémicas tanto éticas como morais → 20 anos para ser aprovado.

O primeiro País a autorizar a sua plantação foi o Bangladesh, posteriormente as Filipinas


OGM Wheat IND-ØØ412-7 Drought tolerance

Drought is the major environmental stress affecting crop production.

HaHB4 (Helianthus annuus homeobox 4) gene from sunflower encodes for a <u>transcription</u> factor involved in tolerance to environmental stress.

HaHB4 was introduced in wheat IND-ØØ412-7 (HB4 wheat)

→ <u>higher yield</u> in environments with low productivity potential.

OGM Wheat IND-ØØ412-7 Grain composition

Compositional analysis of IND-ØØ412-7 wheat

including 41 nutrients and 2 antinutrients for grain and 10 nutrients in forage

→IND-ØØ412-7 compositionally equivalent to non-transgenic wheat

Componenta	IND-ØØ412-7 mean (SE) (range)	Cadenza mean (SE) (range)	Commercial references range ^b	Literature range ^c
Ash	2.37 (0.09)	2.32 (0.07)	1.91-2.09	1.2-3.0
	(1.37-2.90)	(1.69-2.79)		
Carbohydrates	65.4 (0.0)	65.8 (0.48)	65.4-67.5	65.4-78.0
	(62.5-70.2)	(63.0-70.3)		
Moisture	13.09 (0.12)	12.99 (0.16)	13.99-14.30	8.0-18.0
	(12.14-14.75)	(11.83-14.63)		
Protein	16.2 (0.4)	15.9 (0.3)	14.2-15.2	10.0-16.0
	(12.3-18.4)	(13.1-18.7)		
Total fat	2.3 (0.0)	2.2 (0.1)	2.1-2.3	1.5 - 2.0
	(1.8-2.6)	(1.6-2.7)		
Starch	63.7 (0.5)	63.7 (0.4)	63.6-66.0	59-72
	(60.8-68.6)	(61.1-69.3)		
Dietary fiber	13.8 (0.2)	13.9 (0.2)	14.0-15.3	11.0-14.6
	(12.0-15.5)	(11.6-16.0)		
Calcium	461 (12)	458 (12)	441-501	250-538d
	(373-573)	(374-548)		
Iron	49 (2)	50 (2)	38-43	33-79 ^d
	(31-65)	(30-76)		
Phosphorus	4912 (167)	4961 (160)	3970-4534	3320-5160d
	(3194-6146)	(3466-6061)		
Selenium	0.55 (0.03)	0.55 (0.03)	0.53-0.58	$0.04-0.71^{d}$
	(0.35-0.78)	(0.37-0.82)		
Zinc	42 (2)*	46 (2)	32-35	24-47 ^d
	(22-63)	(28-56)		
Thiamine	4.0 (0.1)	4.1 (0.1)	4.0-4.3	1.3-9.9
	(3.1-4.7)	(3.2-5.0)		
Riboflavin	0.43 (0.03)	0.40 (0.02)	0.48-0.66	0.6 - 3.1
	(0.25-0.81)	(0.25-0.62)		
Niacin	60.4 (2.2)	58.8 (1.8)	57.9-68.0	22.0-111.0
	(45.7-83.8)	(46.7-80.8)		
Pyridoxine	4.0 (0.1)	4.1 (0.1)	3.9-4.2	0.9-7.9
	(3.3-4.9)	(3.3-4.8)		
Folic acid	0.29 (0.01)*	0.31 (0.01)	0.27-0.33	0.2 - 0.9
	(0.17-0.38)	(0.16-0.40)		
α-Tocopherol	10.7 (0.4)	10.6 (0.3)	8.4-9.5	9-18
	(6.5-14.0)	(7.7-13.7)		